login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350647
Number T(n,k) of partitions of [n] having k blocks containing their own index when blocks are ordered with decreasing largest elements; triangle T(n,k), n>=0, 0<=k<=ceiling(n/2), read by rows.
5
1, 0, 1, 1, 1, 1, 3, 1, 6, 7, 2, 16, 25, 10, 1, 73, 91, 35, 4, 298, 390, 163, 25, 1, 1453, 1797, 755, 128, 7, 7366, 9069, 3919, 737, 55, 1, 40689, 49106, 21485, 4304, 380, 11, 238258, 284537, 126273, 26695, 2696, 110, 1, 1483306, 1751554, 785435, 173038, 19272, 976, 16
OFFSET
0,7
LINKS
FORMULA
Sum_{k=1..ceiling(n/2)} k * T(n,k) = A350648(n).
EXAMPLE
T(4,0) = 6: 432|1, 42|31, 42|3|1, 4|31|2, 4|3|21, 4|3|2|1.
T(4,1) = 7: 4321, 43|21, 43|2|1, 421|3, 4|321, 4|32|1, 41|3|2.
T(4,2) = 2: 431|2, 41|32.
T(5,2) = 10: 5431|2, 541|32, 531|42, 51|432, 521|4|3, 5|421|3, 5|42|31, 5|42|3|1, 51|4|32, 51|4|3|2.
T(5,3) = 1: 51|42|3.
Triangle T(n,k) begins:
1;
0, 1;
1, 1;
1, 3, 1;
6, 7, 2;
16, 25, 10, 1;
73, 91, 35, 4;
298, 390, 163, 25, 1;
1453, 1797, 755, 128, 7;
7366, 9069, 3919, 737, 55, 1;
40689, 49106, 21485, 4304, 380, 11;
238258, 284537, 126273, 26695, 2696, 110, 1;
...
MAPLE
b:= proc(n, m) option remember; expand(`if`(n=0, 1, add(
`if`(j=n, x, 1)*b(n-1, max(m, j)), j=1..m+1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..ceil(n/2)))(b(n, 0)):
seq(T(n), n=0..14);
MATHEMATICA
b[n_, m_] := b[n, m] = Expand[If[n == 0, 1, Sum[
If[j == n, x, 1]*b[n-1, Max[m, j]], {j, 1, m+1}]]];
T[n_] := With[{p = b[n, 0]},
Table[Coefficient[p, x, i], {i, 0, Ceiling[n/2]}]];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 11 2022, after Alois P. Heinz *)
CROSSREFS
Columns k=0-1 give: A350649, A350650.
Row sums give A000110.
T(2n,n) gives A000124(n-1) for n>=1.
T(2n+1,n+1) gives A000012.
Sequence in context: A359574 A210749 A330587 * A199662 A280293 A226483
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Jan 09 2022
STATUS
approved