login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350510
Square array read by descending antidiagonals: A(n,k) is the least number m such that the base-n expansion of m contains the base-n expansions of 1..k as substrings.
2
1, 2, 1, 6, 5, 1, 12, 11, 6, 1, 44, 38, 27, 7, 1, 44, 95, 75, 38, 8, 1, 92, 285, 331, 194, 51, 9, 1, 184, 933, 1115, 694, 310, 66, 10, 1, 1208, 2805, 4455, 3819, 1865, 466, 83, 11, 1, 1256, 7179, 17799, 16444, 8345, 3267, 668, 102, 12, 1
OFFSET
2,2
FORMULA
For k < n, A(n,k) = A(n,k - 1)*n + k = Sum_{i=1..k} i*(n^(k - i)).
A(n,n) = A049363(n).
A(n,2) = A057544(n).
For n > 3, A(n,3) = A102305(n).
A(n,n - 1) = A023811(n).
EXAMPLE
Square array begins:
n/k|| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
================================================================|
2 || 1 | 2 | 6 | 12 | 44 | 44 | 92 | 184 |
3 || 1 | 5 | 11 | 38 | 95 | 285 | 933 | 2805 |
4 || 1 | 6 | 27 | 75 | 331 | 1115 | 4455 | 17799 |
5 || 1 | 7 | 38 | 194 | 694 | 3819 | 16444 | 82169 |
6 || 1 | 8 | 51 | 310 | 1865 | 8345 | 55001 | 289577 |
7 || 1 | 9 | 66 | 466 | 3267 | 22875 | 123717 | 947260 |
8 || 1 | 10 | 83 | 668 | 5349 | 42798 | 342391 | 2177399 |
9 || 1 | 11 | 102 | 922 | 8303 | 74733 | 672604 | 6053444 |
10 || 1 | 12 | 123 | 1234 | 12345 | 123456 | 1234567 | 12345678 |
11 || 1 | 13 | 146 | 1610 | 17715 | 194871 | 2143588 | 23579476 |
MATHEMATICA
T[n_, k_]:=(m=0; While[!ContainsAll[Subsequences@IntegerDigits[++m, n], IntegerDigits[Range@k, n]]]; m); Flatten@Table[T[1+i, j+1-i], {j, 9}, {i, j}] (* Giorgos Kalogeropoulos, Jan 09 2022 *)
PROG
(PARI) A350510_rows(n, k, N=0)= my(L=List(concat(apply(z->fromdigits([1..z], n), [1..n-1]), if(n>2, fromdigits(concat([1, 0], [2..n-1]), n), []))), T1(x)=digits(x, n), T2(x)=fromdigits(x, n), A(x)=my(S=T1(x)); setbinop((y, z)->T2(S[y..z]), [1..#S]), N=if(N, N, L[#L]), A1=A(N)); while(#L<k, while(!vecmin(apply(z->setsearch(A1, z), [1..#L+1])), A1=A(N++)); listput(L, N)); Vec(L)
CROSSREFS
The first n - 1 terms of rows: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447.
Sequence in context: A145960 A205455 A338135 * A259332 A108767 A046817
KEYWORD
nonn,base,tabl
AUTHOR
Davis Smith, Jan 02 2022
STATUS
approved