login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350200
Array read by antidiagonals: T(n,k) is the determinant of the Hankel matrix of the 2*n-1 consecutive primes starting at the k-th prime, n >= 0, k >= 1.
2
1, 1, 2, 1, 3, 1, 1, 5, -4, -2, 1, 7, 6, 12, 0, 1, 11, -30, -72, 144, 288, 1, 13, 18, 72, 0, 576, -1728, 1, 17, -42, -72, 288, 1152, -7104, -26240, 1, 19, 30, -96, 144, -1248, -11712, 45248, 222272, 1, 23, 22, -188, 488, -112, -11360, 21184, 450432, 1636864
OFFSET
0,3
EXAMPLE
Array begins:
n\k| 1 2 3 4 5 6 7 8
---+--------------------------------------------------------------
0 | 1 1 1 1 1 1 1 1
1 | 2 3 5 7 11 13 17 19
2 | 1 -4 6 -30 18 -42 30 22
3 | -2 12 -72 72 -72 -96 -188 -480
4 | 0 144 0 288 144 488 1800 2280
5 | 288 576 1152 -1248 -112 4432 -1552 15952
6 | -1728 -7104 -11712 -11360 -10816 29952 -89152 -57088
7 | -26240 45248 21184 -103168 -43264 -605440 -379264 271552
8 | 222272 450432 1068800 2022912 3927552 5399552 6315904 6861312
T(3,2) = 12, the determinant of the Hankel matrix
[3 5 7]
[5 7 11]
[7 11 13].
PROG
(Python)
from sympy import Matrix, prime, nextprime
def A350200(n, k):
p = [prime(k)] if n > 0 else []
for i in range(2*n-2): p.append(nextprime(p[-1]))
return Matrix(n, n, lambda i, j:p[i+j]).det()
CROSSREFS
Cf. A350201.
Cf. A000012 (row n = 0), A000040 (row n = 1), A056221 (row n = 2 with opposite sign), A024356 (column k = 1), A071543 (column k = 2).
Sequence in context: A110619 A354234 A191861 * A129761 A319299 A207031
KEYWORD
sign,tabl
AUTHOR
EXTENSIONS
Offset corrected by Pontus von Brömssen, Aug 25 2022
STATUS
approved