login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349343
Dirichlet inverse of A193356, which is defined as n if n is odd, 0 if n is even.
5
1, 0, -3, 0, -5, 0, -7, 0, 0, 0, -11, 0, -13, 0, 15, 0, -17, 0, -19, 0, 21, 0, -23, 0, 0, 0, 0, 0, -29, 0, -31, 0, 33, 0, 35, 0, -37, 0, 39, 0, -41, 0, -43, 0, 0, 0, -47, 0, 0, 0, 51, 0, -53, 0, 55, 0, 57, 0, -59, 0, -61, 0, 0, 0, 65, 0, -67, 0, 69, 0, -71, 0, -73, 0, 0, 0, 77, 0, -79, 0, 0, 0, -83, 0, 85, 0, 87, 0, -89
OFFSET
1,3
LINKS
FORMULA
a(2n) = 0, a(2n+1) = A349341(2n+1) for all n >= 1.
Multiplicative with a(p^e) = 0 if p=2 or e>1, otherwise a(p) = -p. - (After Sebastian Karlsson's similar formula for A349341).
MATHEMATICA
a[1]=1; a[n_]:=-DivisorSum[n, If[OddQ[n/#], n/#, 0]*a@#&, #<n&]; Array[a, 89] (* Giorgos Kalogeropoulos, Nov 15 2021 *)
f[p_, e_] := If[e == 1, -p, 0]; f[2, e_] := 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2023 *)
PROG
(PARI) A349343(n) = { my(f = factor(n)); prod(i=1, #f~, if((2==f[i, 1])||(f[i, 2]>1), 0, -f[i, 1])); };
CROSSREFS
Agrees with A349341 on odd numbers.
Sequence in context: A086664 A164736 A378450 * A109753 A318517 A245494
KEYWORD
sign,easy,mult
AUTHOR
Antti Karttunen, Nov 15 2021
STATUS
approved