login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345448
Number of tilings of a 2 X n rectangle with dominoes and long L-shaped 4-minoes.
0
1, 1, 2, 7, 15, 32, 79, 185, 422, 987, 2307, 5352, 12451, 29005, 67478, 156991, 365391, 850304, 1978615, 4604465, 10715078, 24934611, 58024779, 135028632, 314222011, 731218981, 1701605078, 3959769367, 9214694391, 21443322032, 49900304047, 116121942377
OFFSET
0,3
FORMULA
a(n) = a(n-1) + a(n-2) + 4*a(n-3) + 2*a(n-4).
Sum_{j=0..n} a(n) = (1/7)(a(n+4) - a(n+2) - 5*a(n+1) - 1).
G.f.: 1/(1 - x - x^2 - 4*x^3 - 2*x^4). - Stefano Spezia, Jun 19 2021
a(n) = F(n+1) + 2*Sum_{j=3..n} a(n-j)*F(j) for F(i) = A000045(i) the i-th Fibonacci number. - Greg Dresden, Nov 10 2024
EXAMPLE
For n = 3 the a(3)=7 tilings are:
._____. ._____. ._____. ._____.
| |___| |___| | | ___| |___ |
|_____| |_____| |_|___| |___|_|
._____. ._____. ._____.
|___| | | |___| | | | |
|___|_| |_|___| |_|_|_|
MATHEMATICA
LinearRecurrence[{1, 1, 4, 2}, {1, 1, 2, 7}, 40]
CROSSREFS
Cf. A052980.
Sequence in context: A343531 A095091 A131412 * A209633 A216633 A295145
KEYWORD
nonn,easy
AUTHOR
Greg Dresden and Yiwen Zhang, Jun 19 2021
STATUS
approved