login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209633
Number of ordered set partitions of the multiset [a,a,1,1,...,1] with two "a" and n "1".
1
1, 2, 7, 15, 33, 59, 111, 182, 307, 481, 757, 1134, 1713, 2483, 3611, 5117, 7238, 10029, 13888, 18900, 25682, 34442, 46057, 60934, 80428, 105159, 137137, 177495, 229069, 293694, 375582, 477499, 605526, 764060, 961603, 1204898, 1506142, 1875150, 2329185, 2882939
OFFSET
0,2
COMMENTS
For [a,1,1,...1] one gets A093694, number of one-element transitions from the partitions of n to the partitions of n+1 for labeled parts.
EXAMPLE
For n=4 we have the multiset [a,a,1,1,1,1] with the following a(4) = 33 ordered set partitions:
For [4] one gets [[1,1,1,1]], [[1,1,1,a]], [[1,1,a,a]].
For [3,1] one gets [[1,1,1],[1]], [[1,1,1],[a]], [[1,1,a],[1]], [[1,1,a],[a]], [[1,a,a],[1]].
For [2,2] one gets [[1,1],[1,1]], [[1,1],[1,a]], [[1,1],[a,a]], [[1,a],[1,1]], [[1,a],[1,a]], [[a,a],[1,1]].
For [2,1,1] one gets [[1,1],[1],[1]], [[1,1],[1],[a]], [[1,1],[a],[1]], [[1,1],[a],[a]], [[1,a],[1],[1]], [[1,a],[1],[a]], [[1,a],[a],[1]], [[a,a],[1],[1]].
For [1,1,1,1] one gets [[1],[1],[1],[1]], [[1],[1],[1],[a]], [[1],[1],[a],[1]], [[1],[1],[a],[a]], [[1],[a],[1],[1]], [[1],[a],[1],[a]], [[1],[a],[a],[1]], [[a],[1],[1],[1]], [[a],[1],[1],[a]], [[a],[1],[a],[1]], [[a],[a],[1],[1]].
MAPLE
p:= (f, g)-> zip((x, y)-> x+y, f, g, 0):
b:= proc(n, i) option remember; local f, g;
if n=0 then [1, 0, [1]]
elif i<1 then [0, 0, [0]]
else f:= b(n, i-1); g:= `if`(i>n, [0, 0, [0]], b(n-i, i));
[f[1]+g[1], f[2]+g[2] +`if`(i>1, g[1], 0), p(f[3], [0, g[3][]])]
fi
end:
a:= proc(n) local l, ll;
if n=0 then return 1 fi;
l:= b(n, n); ll:= l[3];
l[2] +add(ll[t+1] *(1+t* (1+(t-1)/2)), t=1..nops(ll)-1)
end:
seq(a(n), n=0..50); # Alois P. Heinz, Mar 11 2012
MATHEMATICA
zip = With[{m = Max[Length[#1], Length[#2]]}, PadRight[#1, m] + PadRight[#2, m]]&; b[n_, i_] := b[n, i] = Module[{f, g}, Which[n == 0, {1, 0, {1}}, i<1, {0, 0, {0}}, True, f = b[n, i-1]; g = If[i>n, {0, 0, {0}}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + If[i>1, g[[1]], 0], zip[f[[3]], Join[{0}, g[[3]]]]}]]; a[n_] := Module[{l, ll}, If[n == 0, Return[1]]; l = b[n, n]; ll = l[[3]]; l[[2]] + Sum[ll[[t+1]]*(1+t*(1+(t-1)/2)), {t, 1, Length[ll]-1}]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 13 2017, after Alois P. Heinz *)
CROSSREFS
Cf. A093694.
Sequence in context: A095091 A131412 A345448 * A216633 A295145 A151998
KEYWORD
nonn
AUTHOR
Thomas Wieder, Mar 11 2012
EXTENSIONS
More terms from Alois P. Heinz, Mar 11 2012
STATUS
approved