login
A344707
Number of partitions of the n-th triangular number n*(n+1)/2 into a triangular number of triangular parts.
1
1, 1, 2, 2, 4, 6, 10, 17, 27, 59, 116, 224, 427, 839, 1616, 3110, 5968, 11337, 21560, 41002, 77058, 144395, 270041, 500683, 926185, 1706838, 3126023, 5706968, 10379752, 18782112, 33868690, 60857056, 108867121, 194086938, 344821828, 610237587, 1076401704
OFFSET
0,3
LINKS
EXAMPLE
a(5) = 6: [15], [10,1,1,1,1,1], [6,6,3], [6,3,3,1,1,1], [6,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1].
MAPLE
t:= n-> issqr(8*n+1):
h:= proc(n) option remember; `if`(t(n), n, h(n-1)) end:
b:= proc(n, i, c) option remember; `if`(n=0 or i=1, `if`(
t(c+n), 1, 0), b(n-i, h(min(n-i, i)), c+1)+b(n, h(i-1), c))
end:
a:= n-> b(n*(n+1)/2$2, 0):
seq(a(n), n=0..40);
MATHEMATICA
t[n_] := IntegerQ@Sqrt[8n+1];
h[n_] := h[n] = If[t[n], n, h[n-1]];
b[n_, i_, c_] := b[n, i, c] = If[n == 0 || i == 1, If[t[c+n], 1, 0], b[n-i, h[Min[n-i, i]], c+1] + b[n, h[i-1], c]];
a[n_] := b[n(n+1)/2, n(n+1)/2, 0];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jan 10 2023, after Alois P. Heinz *)
CROSSREFS
Cf. A000217.
Sequence in context: A361223 A060553 A293673 * A293505 A032307 A007560
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 26 2021
STATUS
approved