login
A060553
a(n) is the number of distinct (modulo geometric D3-operations) patterns which can be formed by an equilateral triangular arrangement of closely packed black and white cells satisfying the local matching rule of Pascal's triangle modulo 2, where n is the number of cells in each edge of the arrangement. The matching rule is such that any elementary top-down triangle of three neighboring cells in the arrangement contains either one or three white cells.
1
2, 2, 4, 6, 10, 16, 32, 52, 104, 192, 376, 720, 1440, 2800, 5600, 11072, 22112, 43968, 87936, 175296, 350592, 700160, 1400192, 2798336, 5596672, 11188992, 22377984, 44747776, 89495040, 178973696, 357947392, 715860992, 1431721984, 2863378432, 5726754816
OFFSET
1,1
FORMULA
a(n) = (2^(n-1)+2^(floor(n/3) + (n mod 3)mod 2))/3 + 2^floor((n-1)/2).
a(n) = (A000079(n-1) + A060547(n))/3 + A060546(n)/2.
a(n) = (A000079(n-1) + 2^A008611(n-1))/3 + 2^(A008619(n-1) - 1), for n >= 1.
G.f.: -2*x*(4*x^5 + x^4 - x^3 - 2*x^2 - x + 1) / ((2*x-1)*(2*x^2-1)*(2*x^3-1)). - Colin Barker, Aug 29 2013
PROG
(PARI) { for (n=1, 500, a=(2^(n-1) + 2^(floor(n/3) + (n%3)%2))/3 + 2^floor((n-1)/2); write("b060553.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 07 2009
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
André Barbé (Andre.Barbe(AT)esat.kuleuven.ac.be), Apr 03 2001
EXTENSIONS
More terms from Colin Barker, Aug 29 2013
STATUS
approved