OFFSET
0,3
COMMENTS
The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.
LINKS
R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015, value P(m=3, n=2, s=6), p. 21.
FORMULA
P_{3,2}(6) = Sum_{p in A003627} 1/p^6 = P(6) - 1/3^6 - P_{3,1}(6).
EXAMPLE
0.015689614727130461563527666152209091814208675553077763366153188676457...
PROG
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
M. F. Hasler, Apr 25 2021
STATUS
approved