login
A343616
Decimal expansion of P_{3,2}(6) = Sum 1/p^6 over primes == 2 (mod 3).
2
0, 1, 5, 6, 8, 9, 6, 1, 4, 7, 2, 7, 1, 3, 0, 4, 6, 1, 5, 6, 3, 5, 2, 7, 6, 6, 6, 1, 5, 2, 2, 0, 9, 0, 9, 1, 8, 1, 4, 2, 0, 8, 6, 7, 5, 5, 5, 3, 0, 7, 7, 7, 6, 3, 3, 6, 6, 1, 5, 3, 1, 8, 8, 6, 7, 6, 4, 5, 7, 2, 3, 3, 5, 6, 2, 3, 7, 3, 0, 4, 0, 7, 0, 0, 5, 5, 2, 4, 2, 2, 1, 0, 3, 3, 6, 8, 4, 3, 5, 2
OFFSET
0,3
COMMENTS
The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.
FORMULA
P_{3,2}(6) = Sum_{p in A003627} 1/p^6 = P(6) - 1/3^6 - P_{3,1}(6).
EXAMPLE
0.015689614727130461563527666152209091814208675553077763366153188676457...
PROG
(PARI) A343616_upto(N=100)={localprec(N+5); digits((PrimeZeta32(6)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32
CROSSREFS
Cf. A003627 (primes 3k-1), A001014 (n^6), A085966 (PrimeZeta(6)), A021733 (1/3^6).
Cf. A343612 - A343619 (P_{3,2}(s): analog for 1/p^s, s = 2 .. 9).
Cf. A343626 (for primes 3k+1), A086036 (for primes 4k+1), A085995 (for primes 4k+3).
Sequence in context: A197480 A180443 A205705 * A270653 A299538 A201512
KEYWORD
nonn,cons
AUTHOR
M. F. Hasler, Apr 25 2021
STATUS
approved