login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342455
The fifth powers of primorials: a(n) = A002110(n)^5.
2
1, 32, 7776, 24300000, 408410100000, 65774855015100000, 24421743243121524300000, 34675383095948798128025100000, 85859681408495723096004822084900000, 552622359415801587878908964592391520700000, 11334919554709059323420895730190266747414284300000, 324509123504618420438174660414872405442002404781629300000
OFFSET
0,2
COMMENTS
The ratio G(n) = sigma(n) / (exp(gamma)*n*log(log(n))), where gamma is the Euler-Mascheroni constant (A001620), as applied to these numbers from a(1)=32 onward, develops as:
1: 0.8893323133
2: 0.7551575418
3: 0.7303870617
4: 0.7347890824
5: 0.7263701246
6: 0.7298051649
7: 0.7304358358
8: 0.7354921494
9: 0.7389343933
10: 0.7391912616
11: 0.7416291350
12: 0.7424159544
...
Notably, after its minimum at term a(5) = 65774855015100000, it starts increasing again, albeit rather slowly. At n=10000 the ratio is 0.8632750..., and at n=40000, it is 0.87545260... Question: Does this trend continue indefinitely? In contrast, for primorials, A002110, the ratio appears to be monotonically decreasing, see comments in A342000.
LINKS
Young Ju Choie, Nicolas Lichiardopol, Pieter Moree and Patrick Solé, On Robin's criterion for the Riemann hypothesis, Journal de théorie des nombres de Bordeaux, 19 no. 2 (2007), pp. 357-372.
FORMULA
a(n) = A000584(A002110(n)) = A002110(n)^5.
MATHEMATICA
FoldList[Times, 1, Prime@ Range[11]]^5 (* Michael De Vlieger, Mar 14 2021 *)
PROG
(PARI) A342455(n) = prod(i=1, n, prime(i))^5;
(Python)
from sympy.ntheory.generate import primorial
def A342455(n): return primorial(n)**5 if n >= 1 else 1 # Chai Wah Wu, Mar 13 2021
CROSSREFS
Diagonal in A079474. After the initial term, also the leftmost branch in that subtree of A329886 whose root is 32.
Sequence in context: A248720 A069052 A334604 * A351805 A221614 A086752
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 12 2021
STATUS
approved