OFFSET
0,2
COMMENTS
The ratio G(n) = sigma(n) / (exp(gamma)*n*log(log(n))), where gamma is the Euler-Mascheroni constant (A001620), as applied to these numbers from a(1)=32 onward, develops as:
1: 0.8893323133
2: 0.7551575418
3: 0.7303870617
4: 0.7347890824
5: 0.7263701246
6: 0.7298051649
7: 0.7304358358
8: 0.7354921494
9: 0.7389343933
10: 0.7391912616
11: 0.7416291350
12: 0.7424159544
...
Notably, after its minimum at term a(5) = 65774855015100000, it starts increasing again, albeit rather slowly. At n=10000 the ratio is 0.8632750..., and at n=40000, it is 0.87545260... Question: Does this trend continue indefinitely? In contrast, for primorials, A002110, the ratio appears to be monotonically decreasing, see comments in A342000.
LINKS
Young Ju Choie, Nicolas Lichiardopol, Pieter Moree and Patrick Solé, On Robin's criterion for the Riemann hypothesis, Journal de théorie des nombres de Bordeaux, 19 no. 2 (2007), pp. 357-372.
MATHEMATICA
FoldList[Times, 1, Prime@ Range[11]]^5 (* Michael De Vlieger, Mar 14 2021 *)
PROG
(PARI) A342455(n) = prod(i=1, n, prime(i))^5;
(Python)
from sympy.ntheory.generate import primorial
def A342455(n): return primorial(n)**5 if n >= 1 else 1 # Chai Wah Wu, Mar 13 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 12 2021
STATUS
approved