Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Mar 12 2021 23:13:04
%S 1,1,1,2,1,1,1,4,6,1,1,4,1,3,8,8,1,3,1,8,2,1,1,4,10,3,9,4,1,1,1,16,2,
%T 1,12,12,1,3,8,4,1,1,1,4,3,1,1,16,14,5,4,8,1,9,8,4,2,1,1,4,1,3,3,32,6,
%U 1,1,8,2,1,1,12,1,3,5,4,6,1,1,16,54,1,1,4,2,3,8,20,1,3,4,4,2,1,24,16,1,7,15,20
%N a(n) = gcd(phi(n), A003415(n)), where A003415(n) is the arithmetic derivative of n, and phi is Euler totient function.
%H Antti Karttunen, <a href="/A342413/b342413.txt">Table of n, a(n) for n = 1..12500</a>
%H Antti Karttunen, <a href="/A342413/a342413.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%F a(n) = gcd(A000010(n), A003415(n)).
%F a(n) = A003415(n) / A342414(n) = A000010(n) / A342415(n).
%F a(n) = A003557(n) * A342416(n).
%t Array[GCD[If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]], EulerPhi[#]] &@ Abs[#] &, 100] (* _Michael De Vlieger_, Mar 11 2021 *)
%o (PARI)
%o A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
%o A342413(n) = gcd(eulerphi(n), A003415(n));
%Y Cf. A000010, A003415, A003557, A166374, A342009, A342414, A342415, A342416.
%Y Cf. also A009195, A085731.
%K nonn
%O 1,4
%A _Antti Karttunen_, Mar 11 2021