login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342413
a(n) = gcd(phi(n), A003415(n)), where A003415(n) is the arithmetic derivative of n, and phi is Euler totient function.
7
1, 1, 1, 2, 1, 1, 1, 4, 6, 1, 1, 4, 1, 3, 8, 8, 1, 3, 1, 8, 2, 1, 1, 4, 10, 3, 9, 4, 1, 1, 1, 16, 2, 1, 12, 12, 1, 3, 8, 4, 1, 1, 1, 4, 3, 1, 1, 16, 14, 5, 4, 8, 1, 9, 8, 4, 2, 1, 1, 4, 1, 3, 3, 32, 6, 1, 1, 8, 2, 1, 1, 12, 1, 3, 5, 4, 6, 1, 1, 16, 54, 1, 1, 4, 2, 3, 8, 20, 1, 3, 4, 4, 2, 1, 24, 16, 1, 7, 15, 20
OFFSET
1,4
FORMULA
a(n) = gcd(A000010(n), A003415(n)).
a(n) = A003415(n) / A342414(n) = A000010(n) / A342415(n).
a(n) = A003557(n) * A342416(n).
MATHEMATICA
Array[GCD[If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]], EulerPhi[#]] &@ Abs[#] &, 100] (* Michael De Vlieger, Mar 11 2021 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A342413(n) = gcd(eulerphi(n), A003415(n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 11 2021
STATUS
approved