login
A342025
a(n) = 1 if n has the same numbers of prime factors of forms 4*k+1 and 4*k+3 when counted with multiplicity, otherwise 0.
3
1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1
OFFSET
1
MATHEMATICA
{1}~Join~Table[Boole[Count[#, 1] == Count[#, 3]] &@ Mod[Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[n]], 4], {n, 2, 120}] (* Michael De Vlieger, Mar 11 2021 *)
PROG
(PARI) A342025(n) = {my(f = factor(n)); sum(k=1, #f~, ((f[k, 1] % 4)==1)*f[k, 2]) == sum(k=1, #f~, ((f[k, 1] % 4)==3)*f[k, 2]); }; \\ From isok function in A072202
(Python)
from sympy import factorint
def A342025(n):
f = factorint(n)
return int(sum(b for a, b in f.items() if a % 4 == 3) == sum(b for a, b in f.items() if a % 4 == 1)) # Chai Wah Wu, Mar 09 2021
CROSSREFS
Characteristic function of A072202.
Sequence in context: A036987 A354193 A354188 * A353518 A353687 A354918
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 09 2021
STATUS
approved