login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341353
Greatest k such that 3^k divides A156552(n); the 3-adic valuation of A156552(n).
9
0, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 3, 0, 0, 1, 1, 0, 0, 0, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 3, 3, 0, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0
OFFSET
2,9
FORMULA
a(n) = A007949(A156552(n)).
a(p) = 0 for all primes p.
a(n^2) > 0 for all n >= 2.
a(n) > 0 iff A329903(n) = 0.
PROG
(PARI)
A007949(n) = valuation(n, 3);
A156552(n) = { my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
CROSSREFS
Cf. A007949, A156552, A329609 (positions of nonzeros), A329903, A341354 (even bisection), A341355.
Cf. also A055396 (the 2-adic valuation + 1), A292251.
Sequence in context: A080224 A341508 A261488 * A010105 A341618 A337690
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 14 2021
STATUS
approved