login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341233
Denominator of the expected fraction of guests without a napkin in Conway's napkin problem with n guests.
3
1, 1, 12, 96, 320, 3840, 161280, 516096, 46448640, 185794560, 2270822400, 163499212800, 1821848371200, 51011754393600, 10712468422656000, 9794256843571200, 555007887802368000, 139861987726196736000, 1449478781889675264000, 49059281848573624320000
OFFSET
1,3
FORMULA
A341232(n)/a(n) = Sum_{k=2..n} (1-2^(2-k))/k!.
Lim_{n->oo} A341232(n)/a(n) = (2-sqrt(e))^2 (A248788).
EXAMPLE
0, 0, 1/12, 11/96, 39/320, 473/3840, 19897/161280, 63683/516096, 5731597/46448640
PROG
(Python)
from sympy import denom, S, factorial
def A341233(n):
return denom(sum((1-S(2)**(2-k))/factorial(k) for k in range(2, n+1)))
(Python)
from math import factorial
from fractions import Fraction
def a(n):
s = sum(Fraction(2**k-4, 2**k*factorial(k)) for k in range(2, n+1))
return s.denominator
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Feb 07 2021
CROSSREFS
Cf. A248788, A341232 (numerators).
Sequence in context: A204630 A192848 A229561 * A120658 A121627 A138162
KEYWORD
nonn,frac
AUTHOR
STATUS
approved