Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jan 18 2021 04:35:45
%S 0,0,1,2,4,4,9,8,13,12,25,12,36,24,32,32,64,28,81,40,66,60,121,48,124,
%T 84,121,84,196,56,225,128,170,144,216,108,324,180,240,160,400,120,441,
%U 220,272,264,529,192,513,252,416,312,676,244,560,336,522,420,841,240,900,480,570,512,792,320
%N a(n) is the sum of (n-2*j) for j < n/2 coprime to n.
%C Sum of differences j-i for 0 < i < j coprime to n with i+j = n.
%C If p is an odd prime, a(p^k) = (p-1)*(p^(2*k-1)-1)/4.
%C Primes in this sequence are a(4) = 2 and a(3^k) = (3^(2*k-1)-1)/2 where 2*k-1 is in A028491.
%H Robert Israel, <a href="/A340714/b340714.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A023896(n) - 2*A066840(n) for n >= 3.
%F a(n) = Sum_{k=1..floor((n-1)/2)} floor(1/gcd(n,n-k)) * (n-2*k). - _Wesley Ivan Hurt_, Jan 18 2021
%e For n = 10, a(10) = (10-2*1) + (10-2*3) = 12.
%p f:= proc(n) local j; add(n-2*j, j= select(t -> igcd(t,n)=1, [$1..(n-1)/2])) end proc:
%p map(f, [$1..100]);
%t Table[Sum[(n - 2 i) Floor[1/GCD[n - i, n]], {i, Floor[(n-1)/2]}], {n, 80}] (* _Wesley Ivan Hurt_, Jan 18 2021 *)
%Y Cf. A023896, A028491, A066840.
%K nonn,look
%O 1,4
%A _J. M. Bergot_ and _Robert Israel_, Jan 17 2021