login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340714
a(n) is the sum of (n-2*j) for j < n/2 coprime to n.
1
0, 0, 1, 2, 4, 4, 9, 8, 13, 12, 25, 12, 36, 24, 32, 32, 64, 28, 81, 40, 66, 60, 121, 48, 124, 84, 121, 84, 196, 56, 225, 128, 170, 144, 216, 108, 324, 180, 240, 160, 400, 120, 441, 220, 272, 264, 529, 192, 513, 252, 416, 312, 676, 244, 560, 336, 522, 420, 841, 240, 900, 480, 570, 512, 792, 320
OFFSET
1,4
COMMENTS
Sum of differences j-i for 0 < i < j coprime to n with i+j = n.
If p is an odd prime, a(p^k) = (p-1)*(p^(2*k-1)-1)/4.
Primes in this sequence are a(4) = 2 and a(3^k) = (3^(2*k-1)-1)/2 where 2*k-1 is in A028491.
LINKS
FORMULA
a(n) = A023896(n) - 2*A066840(n) for n >= 3.
a(n) = Sum_{k=1..floor((n-1)/2)} floor(1/gcd(n,n-k)) * (n-2*k). - Wesley Ivan Hurt, Jan 18 2021
EXAMPLE
For n = 10, a(10) = (10-2*1) + (10-2*3) = 12.
MAPLE
f:= proc(n) local j; add(n-2*j, j= select(t -> igcd(t, n)=1, [$1..(n-1)/2])) end proc:
map(f, [$1..100]);
MATHEMATICA
Table[Sum[(n - 2 i) Floor[1/GCD[n - i, n]], {i, Floor[(n-1)/2]}], {n, 80}] (* Wesley Ivan Hurt, Jan 18 2021 *)
CROSSREFS
KEYWORD
nonn,look
AUTHOR
J. M. Bergot and Robert Israel, Jan 17 2021
STATUS
approved