OFFSET
1,2
COMMENTS
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..514
EXAMPLE
10 ("1010" in binary) is present, because it encodes an odd squarefree number 5*11, for which phi(55) = 4*10 = 40, and bigomega(55-1) = 4 >= 4 = bigomega(40).
12 ("1100" in binary) is NOT present, because it encodes an odd squarefree number 7*11, for which phi(77) = 6*10 = 60, and bigomega(77-1) = 3 < 4 = bigomega(60).
PROG
(PARI)
A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
A339902(n) = { my(s=0, p=2); while(n>0, p = nextprime(1+p); if(n%2, s += bigomega(p-1)); n >>= 1); (s); };
(PARI)
A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
isA339906(n) = { my(x=A019565(2*n)); (bigomega(eulerphi(x))<=bigomega(x-1)); };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 21 2020
STATUS
approved