login
A045702
Sums of two squares of Fibonacci numbers.
2
0, 1, 2, 4, 5, 8, 9, 10, 13, 18, 25, 26, 29, 34, 50, 64, 65, 68, 73, 89, 128, 169, 170, 173, 178, 194, 233, 338, 441, 442, 445, 450, 466, 505, 610, 882, 1156, 1157, 1160, 1165, 1181, 1220, 1325, 1597, 2312, 3025, 3026, 3029, 3034, 3050, 3089, 3194, 3466
OFFSET
1,3
FORMULA
a(4)=5 because 5 = 1^2 + 2^2;
a(8)=13 because 13 = 2^2 + 3^2.
MATHEMATICA
Take[Union[Total/@Tuples[Fibonacci[Range[0, 15]]^2, {2}]], 60] (* Harvey P. Dale, Jan 17 2011 *)
PROG
(PARI) list(lim)=my(sq=sqrtint(lim\=1), v=List(), f=List([0, 1]), t); while((t=f[#f]+f[#f-1])<=sq, listput(f, t)); f=apply(sqr, f); for(i=1, #f, for(j=1, i, t=f[i]+f[j]; if(t>lim, break); listput(v, t))); Set(v) \\ Charles R Greathouse IV, Jun 27 2017
CROSSREFS
Sequence in context: A069011 A353386 A101185 * A005658 A166021 A339906
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved