login
A339850
Number of Hamiltonian circuits within parallelograms of size 3 X n on the triangular lattice.
2
1, 4, 13, 44, 148, 498, 1676, 5640, 18980, 63872, 214944, 723336, 2434192, 8191616, 27566672, 92768192, 312186304, 1050578720, 3535439040, 11897565568, 40038044736, 134737229824, 453421769728, 1525868548224, 5134898635008, 17280115002368, 58151561641216
OFFSET
2,2
FORMULA
G.f.: (x*(1+x))^2/(1-2*x-4*x^2-2*x^3).
a(n) = 2*a(n-1) + 4*a(n-2) + 2*a(n-3) for n > 4.
EXAMPLE
a(2) = 1:
*---*
/ /
* *
/ /
*---*
a(3) = 4:
* *---* *---*---*
/ \ / / \ /
* * * *---* *
/ / / /
*---*---* *---*---*
*---*---* *---*---*
/ / / /
* * * * *---*
/ / \ / / \
*---* * *---*---*
MATHEMATICA
Drop[CoefficientList[Series[(x (1 + x))^2/(1 - 2 x - 4 x^2 - 2 x^3), {x, 0, 28}], x], 2] (* Michael De Vlieger, Jul 06 2021 *)
PROG
(PARI) my(N=66, x='x+O('x^N)); Vec((x*(1+x))^2/(1-2*x-4*x^2-2*x^3))
(Python)
# Using graphillion
from graphillion import GraphSet
def make_T_nk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A339849(n, k):
universe = make_T_nk(n, k)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles(is_hamilton=True)
return cycles.len()
def A339850(n):
return A339849(3, n)
print([A339850(n) for n in range(2, 21)])
CROSSREFS
Row 3 of A339849.
Cf. A339200.
Sequence in context: A257674 A027123 A291236 * A273904 A027125 A027127
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 19 2020
STATUS
approved