OFFSET
0,4
COMMENTS
A composition of n is a finite sequence of positive integers summing to n.
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..220
EXAMPLE
The a(1) = 1 through a(5) = 15 compositions:
(1) (1,1) (1,2) (1,3) (1,4)
(2,1) (3,1) (2,3)
(1,1,1) (1,1,2) (3,2)
(1,2,1) (4,1)
(2,1,1) (1,1,3)
(1,1,1,1) (1,2,2)
(1,3,1)
(2,1,2)
(2,2,1)
(3,1,1)
(1,1,1,2)
(1,1,2,1)
(1,2,1,1)
(2,1,1,1)
(1,1,1,1,1)
MATHEMATICA
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n], CoprimeQ@@Union[#]&]], {n, 0, 15}]
CROSSREFS
A000740 is a relatively prime instead of pairwise coprime version.
A304709 is the unordered version.
A333228 ranks these compositions.
A337561 is the strict case.
A337603 is the length-3 case.
A337664 considers all singletons to be coprime.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A337461 counts pairwise coprime length-3 compositions.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 22 2020
EXTENSIONS
a(26)-a(35) from Alois P. Heinz, Sep 29 2020
STATUS
approved