login
A304709
Number of integer partitions of n whose distinct parts are pairwise coprime.
21
1, 1, 2, 3, 6, 7, 13, 16, 23, 29, 42, 49, 69, 83, 102, 126, 161, 191, 239, 281, 336, 402, 484, 566, 672, 787, 919, 1067, 1251, 1449, 1684, 1934, 2223, 2554, 2920, 3341, 3821, 4344, 4928, 5586, 6334, 7163, 8091, 9100, 10228, 11492, 12902, 14449, 16167, 18058
OFFSET
1,3
COMMENTS
Two parts are coprime if they have no common divisor greater than 1. For partitions of length 1 note that (1) is coprime but (x) is not coprime for x > 1.
LINKS
FORMULA
a(n) = A304712(n) + 1 - A000005(n). - Andrew Howroyd, Nov 02 2019
EXAMPLE
The a(6) = 7 integer partitions of 6 whose distinct parts are pairwise coprime are (51), (411), (321), (3111), (2211), (21111), (111111).
MATHEMATICA
Table[Select[IntegerPartitions[n], CoprimeQ@@Union[#]&]//Length, {n, 20}]
PROG
(PARI)
lista(nn)={local(Cache=Map());
my(excl=vector(nn, n, sum(i=1, n-1, if(gcd(i, n)>1, 2^(n-i)))));
my(c(n, m, b)=
if(n==0, 1,
while(m>n || bittest(b, 0), m--; b>>=1);
my(hk=[n, m, b], z);
if(!mapisdefined(Cache, hk, &z),
z = if(m, self()(n, m-1, b>>1) + self()(n-m, m, bitor(b, excl[m])), 0);
mapput(Cache, hk, z)); z));
my(a(n)=c(n, n, 0) + 1 - numdiv(n));
for(n=1, nn, print1(a(n), ", "))
} \\ Andrew Howroyd, Nov 02 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 17 2018
STATUS
approved