login
A336926
Lexicographically earliest infinite sequence such that a(i) = a(j) => A335880(1+sigma(i)) = A335880(1+sigma(j)), for all i, j >= 1.
3
1, 1, 2, 1, 3, 4, 4, 1, 3, 5, 4, 6, 7, 8, 8, 1, 5, 2, 9, 10, 5, 6, 8, 9, 1, 10, 7, 11, 12, 13, 5, 1, 14, 6, 14, 9, 5, 9, 11, 10, 10, 7, 6, 15, 10, 13, 14, 16, 6, 14, 13, 11, 6, 11, 13, 11, 11, 10, 9, 11, 10, 7, 11, 1, 15, 17, 10, 18, 7, 17, 13, 14, 13, 11, 16, 19, 7, 11, 11, 13, 9, 18, 15, 17, 20, 21, 11, 11, 10, 21, 13, 11, 21, 17, 11, 21, 11, 10, 11, 20, 5
OFFSET
1,3
COMMENTS
Restricted growth sequence transform of the function f(n) = A335880(A088580(n)).
For all i, j:
A324400(i) = A324400(j) => a(i) = a(j),
a(i) = a(j) => A336694(i) = A336694(j),
a(i) = a(j) => A336695(i) = A336695(j).
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A329697(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A329697(f[k, 1]-1)))); };
A331410(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A331410(f[k, 1]+1)))); };
Aux335880(n) = [A329697(n), A331410(n)];
v336926 = rgs_transform(vector(up_to, n, Aux335880(1+sigma(n))));
A336926(n) = v336926[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 10 2020
STATUS
approved