login
A334481
Decimal expansion of Product_{k>=1} (1 + 1/A002476(k)^2).
4
1, 0, 3, 3, 5, 3, 7, 8, 8, 8, 4, 6, 1, 3, 5, 2, 8, 4, 3, 0, 8, 2, 8, 4, 6, 1, 8, 4, 9, 7, 6, 2, 1, 8, 3, 3, 9, 4, 7, 5, 1, 7, 6, 7, 7, 4, 8, 1, 4, 9, 1, 6, 3, 0, 1, 2, 3, 2, 4, 8, 9, 2, 5, 1, 0, 3, 2, 7, 7, 7, 7, 4, 2, 3, 9, 4, 0, 7, 0, 3, 6, 1, 5, 8, 7, 5, 3, 2, 0, 5, 9, 1, 7, 2, 4, 0, 8, 1, 4, 0, 1, 1, 7, 3, 9
OFFSET
1,3
COMMENTS
Product_{k>=1} (1 - 1/A002476(k)^2) = 1/A175646 = 0.9671040753637981066150556834173635260473412207450...
Let Zeta_{6,1}(4) = 1/ Product_{k>=1}(1-1/A002476(k)^4) = 1.0004615089.. and Zeta_{6,1}(2)= A175646 as tabulated in arXiv:1008.2547. Then this constant equals Zeta_{6,1}(2)/Zeta_{6,1}(4). - R. J. Mathar, Jan 12 2021
LINKS
R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015, Zeta_{6,1}(4) and Zeta_{6,1}(2) in Section 3.2.
FORMULA
A334481 * A334482 = 54/(5*Pi^2).
EXAMPLE
1.03353788846135284308284618497621833947517677481...
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, May 02 2020
EXTENSIONS
More digits from Vaclav Kotesovec, Jun 27 2020
STATUS
approved