login
A334084
Integers m such that only 2 binomial coefficients C(m,k), with 0<=k<=m, are practical numbers.
2
1, 3, 5, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767
OFFSET
1,2
COMMENTS
Integers m such that A334082(m) = m-1.
Integers of the form 2^k-1 (A000225) with k>0 are terms, but this condition is not necessary since 5 is a term.
PROG
(PARI) isok(n) = sum(k=0, n, !is_A005153(binomial(n, k))) == n-1;
(Python)
from itertools import count, islice
from math import comb
from sympy import factorint
def A334084_gen(startvalue=1): # generator of terms >= startvalue
for n in count(max(startvalue, 1)):
for k in range(1, n):
c = comb(n, k)
l = (~c & c-1).bit_length()
if l>0:
P = (1<<l+1)-1
for p, e in factorint(c>>l).items():
if p > 1+P:
break
P *= (p**(e+1)-1)//(p-1)
else:
break
else:
yield n
A334084_list = list(islice(A334084_gen(), 10)) # Chai Wah Wu, Jul 05 2023
CROSSREFS
Cf. A005153 (practical numbers), A007318 (binomial coefficients).
Sequence in context: A261646 A303027 A217615 * A050553 A005540 A155802
KEYWORD
nonn,more
AUTHOR
Michel Marcus, Apr 14 2020
EXTENSIONS
a(11) from Jinyuan Wang, Apr 14 2020
a(12)-a(16) from Chai Wah Wu, Jul 05 2023
STATUS
approved