OFFSET
1,3
COMMENTS
Paul Erdős and Leo Moser conjectured that, for any even numbers 2*n, there exist integers q and r such that phi(q) + phi(r) = 2*n.
REFERENCES
George E. Andrews, Number Theory, Chapter 6, Arithmetic Functions, 6-1 Combinatorial Study of Phi(n) page 75-82, Dover Publishing, NY, 1971.
Daniel Zwillinger, Editor-in-Chief, CRC Standard Mathematical Tables and Formulae, 31st Edition, 2.4.15 Euler Totient pages 128-130, Chapman & Hall/CRC, Boca Raton, 2003.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Eric W. Weisstein's World of Mathematics, Goldbach's Conjecture.
Wikipedia, Goldbach's conjecture
MAPLE
f:= proc(n) local q, R;
for q from n by -1 to 0 do
R:= numtheory:-invphi(2*n-numtheory:-phi(q));
if ormap(`>=`, R, q) then return q fi;
od;
-1
end proc:
map(f, [$1..100]); # Robert Israel, Sep 15 2024
MATHEMATICA
mbr = Union@Array[EulerPhi@# &, 500]; a[n_] := Block[{q = n}, While[! MemberQ[mbr, 2 n - EulerPhi@q], q--]; q]; Array[a, 70]
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Robert G. Wilson v, Apr 07 2020
EXTENSIONS
Definition corrected by Robert Israel, Sep 15 2024
STATUS
approved