login
A333028
Array consisting of the primitive rows of the Wythoff array (A035513), read by antidiagonals.
4
1, 2, 4, 3, 7, 14, 5, 11, 23, 17, 8, 18, 37, 28, 19, 13, 29, 60, 45, 31, 25, 21, 47, 97, 73, 50, 41, 27, 34, 76, 157, 118, 81, 66, 44, 30, 55, 123, 254, 191, 131, 107, 71, 49, 35, 89, 199, 411, 309, 212, 173, 115, 79, 57, 43, 144, 322, 665, 500, 343, 280
OFFSET
1,2
COMMENTS
In a row of the Wythoff array, either every two consecutive terms are relatively prime or else no two consecutive terms are relatively prime. In the first case, we call the row primitive; otherwise, the row is an integer multiple of a tail of a preceding row. The primitive rows are interspersed, in the sense that if h < k then the numbers in row k are interspersed, in magnitude, among numbers in row h. In each row, every pair of consecutive numbers is a Wythoff pair of relatively prime numbers. The array includes every prime.
EXAMPLE
Northwest corner:
1 2 3 5 8 13 21 34
4 7 11 18 29 47 76 123
14 23 37 60 97 157 254 411
17 28 45 73 118 191 309 500
19 31 50 81 131 212 343 555
25 41 66 107 173 280 453 733
27 44 71 115 186 301 487 788
30 49 79 128 207 335 542 877
MATHEMATICA
W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k];
t = Table[GCD[W[n, 1], W[n, 2]], {n, 1, 160}]
u = Flatten[Position[t, 1]]; v[n_, k_] := W[u[[n]], k];
TableForm[Table[v[n, k], {n, 1, 30}, {k, 1, 8}]] (* A333028 array *)
Table[v[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A333028 sequence *)
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Mar 10 2020
STATUS
approved