login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332940
a(n) is the least prime p such that p = x^2 + (2g+1)*y^2 and p != 2*g+1 and p mod (2g+1) != 1 where g is the n-th Sophie Germain prime.
0
29, 11, 47, 59, 83, 317, 227, 251, 311, 503, 263, 587, 383, 503, 419, 503, 1997, 647, 599, 911, 863, 983, 1187, 1031, 1019, 1163, 1223, 1319, 1451, 3083, 1511, 1583, 1523, 1559, 3923, 2399, 3203, 2063, 2939, 2099, 2243, 2243, 2591, 3359, 2903, 2963, 3023, 2939, 2999
OFFSET
1,1
EXAMPLE
For g=A005384(1)=2, 2g+1 is 5, we have 29 = 9 + 5*4 and 29 != 5, and 29 mod 5 != 1.
PROG
(PARI) f(g) = {my(p = 2); while (1, my(s = 1); while(s^2 < p/(2*g+1), if (issquare(p - (2*g+1)*s^2), if ((p != 2*g+1) && (Mod(p, 2*g+1) != 1), return(p); ); ); s++; ); p = nextprime(p+1); ); }
lista(nn) = {forprime(g=2, nn, if (isprime(2*g+1), print1(f(g), ", ")); ); }
CROSSREFS
Cf. A005384 (Sophie Germain primes).
Sequence in context: A040816 A336061 A160494 * A165769 A040815 A033349
KEYWORD
nonn
AUTHOR
Michel Marcus, Mar 03 2020
STATUS
approved