login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332942
Number of entries in the second blocks of all set partitions of [n] when blocks are ordered by increasing lengths.
2
1, 7, 25, 101, 366, 1555, 7099, 34627, 184033, 1059972, 6425992, 41266681, 280938451, 2009636335, 15025372685, 117386912433, 956458929950, 8104399834719, 71244441818927, 648761935841876, 6110827367541999, 59454153443971106, 596654820386392152
OFFSET
2,2
LINKS
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1,
max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))
end:
a:= n-> b(n, 1, 2)[2]:
seq(a(n), n=2..24);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i > n, 0 {0, 0}, Sum[ Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][b[n - i*j, i + 1, Max[0, t - j]]/j!*multinomial[n, Append[Table[i, {j}], n - i*j]]], {j, 0, n/i}]]];
a[n_] := b[n, 1, 2][[2]];
a /@ Range[2, 24] (* Jean-François Alcover, Jan 06 2021, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A319298.
Sequence in context: A304421 A138729 A035509 * A247173 A141627 A289606
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 03 2020
STATUS
approved