login
A332330
Decimal expansion of the next-to-least positive zero of the 8th Maclaurin polynomial of cos x.
2
4, 2, 4, 0, 7, 9, 6, 9, 8, 6, 3, 7, 6, 2, 6, 9, 4, 5, 5, 1, 2, 8, 7, 0, 6, 3, 4, 2, 1, 4, 5, 5, 2, 6, 2, 1, 6, 2, 2, 4, 7, 6, 0, 3, 9, 2, 3, 9, 7, 8, 0, 6, 6, 6, 0, 9, 9, 0, 8, 0, 0, 1, 9, 3, 4, 3, 8, 4, 1, 9, 4, 6, 1, 3, 0, 3, 3, 2, 7, 7, 6, 8, 8, 4, 5, 9
OFFSET
1,1
COMMENTS
The Maclaurin polynomial p(2n,x) of cos x is 1 - x^2/2! + x^4/4! + ... + (-1)^n x^(2n)/(2n)!.
Let z(n) be the next-to-least positive zero of p(2n,x) if there is such a zero. The limit of z(n) is 3 Pi/2 = 4.7123889..., as in A197723.
EXAMPLE
Next-to-least positive zero = 4.240796986376269455128706342145526...
MATHEMATICA
z = 150; p[n_, x_] := Normal[Series[Cos[x], {x, 0, n}]]
t = x /. NSolve[p[8, x] == 0, x, z][[6]]
u = RealDigits[t][[1]]
Plot[Evaluate[p[8, x]], {x, -1, 5}]
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Clark Kimberling, Feb 11 2020
STATUS
approved