login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332233
Number of integer partitions lambda (of any k) satisfying n = max_{p:lambda} p*m(p,lambda), where m(p,lambda) is the multiplicity of part p in lambda.
2
1, 1, 4, 10, 44, 84, 528, 864, 4944, 12720, 56832, 89856, 882432, 1209600, 6036480, 20017152, 98592768, 141834240, 1202135040, 1625702400, 12997877760, 35291013120, 124429271040, 191102976000, 2350327726080, 4064999178240, 15972386734080, 47163577466880
OFFSET
0,3
COMMENTS
a(0) = 1 by convention.
LINKS
FORMULA
a(n) = Sum_{k=n..A024916(n)} A134979(k,n) for n > 0.
a(n) = A131385(n+1) - A131385(n), for n>0. - Ridouane Oudra, Oct 30 2023
EXAMPLE
a(2) = 4: 2, 11, 21, 211.
a(3) = 10: 3, 31, 32, 111, 311, 321, 2111, 3111, 3211, 32111.
a(4) = 44: 4, 22, 41, 42, 43, 221, 322, 411, 421, 422, 431, 432, 1111, 2211, 3221, 4111, 4211, 4221, 4311, 4321, 4322, 21111, 22111, 31111, 32211, 41111, 42111, 42211, 43111, 43211, 43221, 221111, 321111, 322111, 421111, 422111, 431111, 432111, 432211, 3221111, 4221111, 4321111, 4322111, 43221111.
MAPLE
b:= proc(n, i, m, t) option remember; `if`(n=0, m,
`if`(i<1 or m=0 and n<t, 0, add(b(n-i*j, i-1,
`if`(t=i*j, 1, m), t), j=0..min(t, n)/i)))
end:
a:= proc(k) option remember; local r, n, t; r:=0;
for n from k do t:= b(n$2, 0, k);
if t=0 then break else r:=r+t fi od; r
end: a(0):=1:
seq(a(n), n=0..20);
MATHEMATICA
$RecursionLimit = 2000;
b[n_, i_, m_, t_] := b[n, i, m, t] = If[n==0, m, If[i<1 || m==0 && n<t, 0, Sum[b[n - i j, i-1, If[t == i j, 1, m], t], {j, 0, Min[t, n]/i}]]];
a[0] = 1;
a[k_] := a[k] = Module[{r = 0, n, t}, For[n = k, True, n++, t = b[n, n, 0, k]; If[t == 0, Break[], r += t]]; r];
a /@ Range[0, 27] (* Jean-François Alcover, May 08 2020, after Maple *)
CROSSREFS
Column sums of A134979.
Cf. A024916.
Cf. A131385 (partial sum).
Sequence in context: A194993 A280907 A372648 * A149220 A149221 A149222
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 07 2020
STATUS
approved