login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332231
a(n) = 1/n! * ((n+1)*n)!/Gamma(1 + (n+1)*n/2) * Gamma(1 + (n-1)*n/2)/((n-1)*n)!.
2
1, 2, 30, 924, 41990, 2521260, 188296108, 16825310040, 1750702260294, 207921866100300, 27755558583300548, 4114068719809705800, 670456479908731386780, 119149476568133242798840, 22932161636278362035091480
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} binomial((n+1)*n,k) * binomial(n^2-k-1,n-k).
From Vaclav Kotesovec, Feb 08 2020: (Start)
a(n) ~ 2^(n - 1/2) * exp(n) * n^(n - 1/2) / sqrt(Pi).
a(n) = binomial(n*(n+1), 2*n) * binomial(2*n, n) / binomial(n*(n+1)/2, n). (End)
MATHEMATICA
Table[Sum[Binomial[(n + 1)*n, k]*Binomial[n^2 - k - 1, n - k], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Feb 08 2020 *)
Table[Binomial[n*(n+1), 2*n] * Binomial[2*n, n] / Binomial[n*(n+1)/2, n], {n, 0, 15}] (* Vaclav Kotesovec, Feb 08 2020 *)
PROG
(PARI) {a(n) = sum(k=0, n, binomial((n+1)*n, k)*binomial(n^2-k-1, n-k))}
CROSSREFS
Main diagonal of A330843.
Sequence in context: A229781 A114938 A082653 * A274389 A186292 A273661
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 08 2020
STATUS
approved