login
A330256
a(0) = 0; for n > 0, a(n) = n - a((Sum_{k=0..n-1} a(k)) mod n).
2
0, 1, 1, 2, 4, 3, 3, 7, 5, 4, 10, 4, 7, 6, 13, 5, 12, 16, 12, 18, 14, 21, 9, 11, 10, 14, 22, 15, 14, 28, 9, 10, 23, 31, 24, 33, 22, 15, 37, 24, 16, 40, 14, 34, 37, 36, 43, 23, 34, 42, 13, 18, 37, 50, 17, 18, 32, 40, 40, 19, 46, 57, 39, 59, 30, 15, 32, 21, 11, 32, 40, 65, 32, 62, 41, 58, 63, 60
OFFSET
0,4
LINKS
Samuel B. Reid, Colored plot of one billion terms. This plot is normalized by column. Within each column, density corresponds, in a linear fashion, to this spectrum.
EXAMPLE
a(1) = 1 - a(0 mod 1) = 1.
a(2) = 2 - a((0+1) mod 2) = 1.
a(3) = 3 - a((0+1+1) mod 3) = 2.
a(4) = 4 - a((0+1+1+2) mod 4) = 4.
MATHEMATICA
a[0] = 0; a[n_] := a[n] = n - a[Mod[Sum[a[k], {k, 0, n - 1}], n]]; Array[a, 100, 0] (* Amiram Eldar, Dec 07 2019 *)
PROG
(PARI) s=0; for (n=1, #(a=vector(78)), print1 (a[n]=if (n==1, 0, (n-1)-a[1+(s%(n-1))])", "); s+=a[n]) \\ Rémy Sigrist, Dec 08 2019
CROSSREFS
Sequence in context: A161413 A201049 A303354 * A227418 A278447 A235590
KEYWORD
nonn
AUTHOR
Samuel B. Reid, Dec 07 2019
STATUS
approved