# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a330256 Showing 1-1 of 1 %I A330256 #26 Dec 19 2019 08:37:24 %S A330256 0,1,1,2,4,3,3,7,5,4,10,4,7,6,13,5,12,16,12,18,14,21,9,11,10,14,22,15, %T A330256 14,28,9,10,23,31,24,33,22,15,37,24,16,40,14,34,37,36,43,23,34,42,13, %U A330256 18,37,50,17,18,32,40,40,19,46,57,39,59,30,15,32,21,11,32,40,65,32,62,41,58,63,60 %N A330256 a(0) = 0; for n > 0, a(n) = n - a((Sum_{k=0..n-1} a(k)) mod n). %H A330256 Samuel B. Reid, Table of n, a(n) for n = 0..10000 %H A330256 Samuel B. Reid, Colored plot of one billion terms. This plot is normalized by column. Within each column, density corresponds, in a linear fashion, to this spectrum. %H A330256 Samuel B. Reid, Distribution, between 0 and n, of the first billion terms %e A330256 a(1) = 1 - a(0 mod 1) = 1. %e A330256 a(2) = 2 - a((0+1) mod 2) = 1. %e A330256 a(3) = 3 - a((0+1+1) mod 3) = 2. %e A330256 a(4) = 4 - a((0+1+1+2) mod 4) = 4. %t A330256 a[0] = 0; a[n_] := a[n] = n - a[Mod[Sum[a[k], {k, 0, n - 1}], n]]; Array[a, 100, 0] (* _Amiram Eldar_, Dec 07 2019 *) %o A330256 (PARI) s=0; for (n=1, #(a=vector(78)), print1 (a[n]=if (n==1, 0, (n-1)-a[1+(s%(n-1))])", "); s+=a[n]) \\ _Rémy Sigrist_, Dec 08 2019 %Y A330256 Cf. A330249, A066910. %K A330256 nonn %O A330256 0,4 %A A330256 _Samuel B. Reid_, Dec 07 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE