login
A329748
Number of complete compositions of n whose multiplicities cover an initial interval of positive integers.
5
1, 1, 0, 2, 3, 3, 6, 12, 12, 42, 114, 210, 60, 360, 720, 1320, 1590, 3690, 6450, 16110, 33120, 59940, 61320, 112980, 171780, 387240, 803880, 769440, 1773240, 2823240, 5790960, 9916200, 19502280, 28244160, 56881440, 130548600, 279578880, 320554080, 541323720
OFFSET
0,4
COMMENTS
A composition of n is a finite sequence of positive integers with sum n. It is complete if it covers an initial interval of positive integers.
EXAMPLE
The a(1) = 1 through a(8) = 12 compositions (empty column not shown):
(1) (12) (112) (122) (123) (1123) (1223)
(21) (121) (212) (132) (1132) (1232)
(211) (221) (213) (1213) (1322)
(231) (1231) (2123)
(312) (1312) (2132)
(321) (1321) (2213)
(2113) (2231)
(2131) (2312)
(2311) (2321)
(3112) (3122)
(3121) (3212)
(3211) (3221)
MATHEMATICA
normQ[m_]:=Or[m=={}, Union[m]==Range[Max[m]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], normQ[#]&&normQ[Length/@Split[Sort[#]]]&]], {n, 0, 10}]
CROSSREFS
Looking at run-lengths instead of multiplicities gives A329749.
The non-complete version is A329741.
Complete compositions are A107429.
Sequence in context: A054630 A049875 A180887 * A173094 A087989 A028257
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 21 2019
EXTENSIONS
a(21)-a(38) from Alois P. Heinz, Jul 06 2020
STATUS
approved