login
A028257
Engel expansion of sqrt(3).
8
1, 2, 3, 3, 6, 17, 23, 25, 27, 73, 84, 201, 750, 24981, 46882, 119318, 121154, 242807, 276226, 3009377, 3383197, 37871208, 45930966, 261728403, 281868388, 3021299588, 3230725884, 13646315477, 30951797814, 80602040381, 1016719946612, 49448385811777
OFFSET
1,2
FORMULA
For a number x (here sqrt(3)), define a(1) <= a(2) <= a(3) <= ... so that x = 1/a(1) + 1/(a(1)*a(2)) + 1/(a(1)*a(2)*a(3)) + ... by x(1) = x, a(n) = ceiling(1/x(n)), x(n+1) = x(n)*a(n) - 1.
MATHEMATICA
EngelExp[A_, n_]:=Join[Array[1&, Floor[A]], First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]], Expand[ #[[1]]#[[2]]-1]}&, {Ceiling[1/(A-Floor[A])], A-Floor[A]}, n-1]]; EngelExp[N[3^(1/2), 7! ], 50] (* Vladimir Joseph Stephan Orlovsky, Jun 08 2009 *)
CROSSREFS
Cf. A006784 (for definition of Engel expansion), A220335.
Sequence in context: A329748 A173094 A087989 * A100228 A111003 A347904
KEYWORD
nonn
AUTHOR
Naoki Sato (naoki(AT)math.toronto.edu)
EXTENSIONS
Better name and more terms from Simon Plouffe
More terms from Sean A. Irvine, Dec 16 2019
STATUS
approved