OFFSET
1,1
COMMENTS
The corresponding rounded values of sigma(k)/k are 1.540, 1.652, 1.665, 1.794, 1.794, 1.815, 1.816, 1.893, ...
Do abundant Carmichael numbers exist?
Abundant Carmichael numbers do exist. The prime factorization of such a number is: 5 * 7 * 13 * 17 * 19 * 23 * 37 * 59 * 67 * 73 * 83 * 89 * 97 * 109 * 163 * 193 * 199 * 233 * 257 * 349 * 353 * 397 * 433 * 523 * 739 * 929 * 1153 * 2593 * 2953 * 3169 * 5569 * 7873 * 9397 * 70849 * 313897. - Daniel Suteu, Aug 16 2020
a(9) > 10^22. - Amiram Eldar, Apr 20 2024
MATHEMATICA
carmichaelQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]]; rm = 0; s={}; Do[If[!carmichaelQ[n], Continue[]]; r = DivisorSigma[1, n]/n; If[r > rm, AppendTo[s, n]; rm = r], {n, 2, 10^5}]; s
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Nov 13 2019
STATUS
approved