OFFSET
1,4
COMMENTS
Also the product of parts of the conjugate of the integer partition with Heinz number n, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). For example, the partition (3,2) with Heinz number 15 has conjugate (2,2,1) with product a(15) = 4. - Gus Wiseman, Mar 27 2022
LINKS
FORMULA
From Antti Karttunen, Jan 14 2020: (Start)
If n = p(k1)^e(k1) * p(k2)^e(k2) * p(k3)^e(k3) * ... * p(kx)^e(kx), with p(n) = A000040(n) and k1 > k2 > k3 > ... > kx, then a(n) = e(k1)^(k1-k2) * (e(k1)+e(k2))^(k2-k3) * (e(k1)+e(k2)+e(k3))^(k3-k4) * ... * (e(k1)+e(k2)+...+e(kx))^kx.
(End)
MATHEMATICA
Table[Times @@ FactorInteger[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]][[All, -1]], {n, 105}] (* Michael De Vlieger, Jan 21 2020 *)
PROG
(PARI)
A034386(n) = prod(i=1, primepi(n), prime(i));
(PARI) A329382(n) = if(1==n, 1, my(f=factor(n), e=0, m=1); forstep(i=#f~, 1, -1, e += f[i, 2]; m *= e^(primepi(f[i, 1])-if(1==i, 0, primepi(f[i-1, 1])))); (m)); \\ Antti Karttunen, Jan 14 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 17 2019
STATUS
approved