login
A328391
Maximal exponent in the prime factorization of A327860(n): a(n) = A051903(A327860(n)).
13
0, 0, 1, 1, 1, 0, 1, 3, 1, 1, 1, 1, 2, 1, 1, 4, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 2, 7, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2
OFFSET
1,8
FORMULA
a(A002110(n)) = 0 for all n >= 0.
For all n >= 1, a(n) >= A328114(n)-1. [Because arithmetic derivative will decrease the maximal prime exponent (A051903) of its argument by at most one]
PROG
(PARI)
A051903(n) = if((1==n), 0, vecmax(factor(n)[, 2]));
A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 15 2019
STATUS
approved