login
A327974
a(n) = A051023(n) XOR A051023(n-1), where A051023 gives the middle column of rule-30 1-D cellular automaton, when started from a lone 1 cell.
5
0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0
OFFSET
1
COMMENTS
Taking the first differences of indices of 1's in this sequence gives A327983 from its second term onward.
FORMULA
a(n) = A051023(n) XOR A051023(n-1).
a(n) = A000035(floor(A327973(n) / A000079(n))).
EXAMPLE
The evolution of one-dimensional cellular automaton rule 30 proceeds as follows, when started from a single alive (1) cell:
0: (1) a(n)
1: 1(1)1 0
2: 11(0)01 1
3: 110(1)111 1
4: 1100(1)0001 0
5: 11011(1)10111 0
6: 110010(0)001001 1
7: 1101111(0)0111111 0
8: 11001000(1)11000001 1
9: 110111101(1)001000111 0
10: 1100100001(0)1111011001 1
11: 11011110011(0)10000101111 0
12: 110010001110(0)110011010001 0
13: 1101111011001(1)1011100110111 1
We start from row 1, and write 0 if the central cell is equal to the central cell in the row above, or 1 if it differs, which gives us terms: 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, ...
MATHEMATICA
A327974list[nmax_]:=BitXor@@@Partition[CellularAutomaton[30, {{1}, 0}, {nmax, {{0}}}], 2, 1]; A327974list[150] (* Paolo Xausa, May 26 2023 *)
PROG
(PARI)
A269160(n) = bitxor(n, bitor(2*n, 4*n)); \\ From A269160.
A110240(n) = if(!n, 1, A269160(A110240(n-1)));
A327973(n) = bitxor(A110240(n), 2*A110240(n-1));
A327974(n) = ((A327973(n)>>n)%2);
(PARI)
up_to = 105;
A269160(n) = bitxor(n, bitor(2*n, 4*n));
A327974list(up_to) = { my(v=vector(up_to), s=1, oc=s, nc, n=0, k=0); while(k<up_to, n++; s = A269160(s); nc = (s>>n)%2; k++; v[k] = bitxor(oc, nc); oc=nc); (v); }
v327974 = A327974list(up_to);
A327974(n) = v327974[n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 03 2019
STATUS
approved