login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327811
Numbers obtained from cyclically permuting the base-7 digits of 13143449029 and converting back to decimal.
1
2732225029, 4344971347, 5284288003, 6552690421, 7329791221, 8845405603, 8956420003, 9307441621, 9784676947, 9786942547, 13127589829, 13143449029
OFFSET
1,1
COMMENTS
All terms are prime, therefore 13143449029 is a base-7 circular prime, see A293660.
13143449029 is remarkable in that it has 12 digits in base 7 and may be the largest known nonrepunit circular prime in that base.
EXAMPLE
Base-7 expansion | Decimal value
---------------------------------
643464321244 | 13143449029
434643212446 | 8956420003
346432124464 | 7329791221
464321244643 | 9784676947
643212446434 | 13127589829
432124464346 | 8845405603
321244643464 | 6552690421
212446434643 | 4344971347
124464346432 | 2732225029
244643464321 | 5284288003
446434643212 | 9307441621
464346432124 | 9786942547
PROG
(PARI) rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v
decimal(v, base) = my(w=[]); for(k=0, #v-1, w=concat(w, v[#v-k]*base^k)); sum(i=1, #w, w[i])
my(d=digits(13143449029, 7), e=d, v=[]); while(1, v=concat(v, [decimal(d, 7)]); d=rot(d); if(d==e, return(vecsort(v))))
CROSSREFS
KEYWORD
nonn,base,easy,fini,full
AUTHOR
Felix Fröhlich, Sep 26 2019
STATUS
approved