Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Oct 21 2019 14:10:00
%S 5,0,2557,51137,52057,55373,88867,95273,179947,236653,993647,1010467,
%T 1935533,2031767,2138803,2849317,8031343,11696563,11715133,18125993,
%U 22615493,26766633,26801393,29963077,39377893,58282927,70354657,98988257,119772847,141442493,145460123
%N a(1) is the smallest prime p such that 6*p^2-1 and 6*p^2+1 are twin primes; for n > 1, a(n) is the smallest prime q > a(n-1) such that 6*q^prime(n)-1 and 6*q^prime(n)+1 are twin primes or 0 if no solution exists.
%C For prime(2) = 3 there is no solution such that 6*q^3-1 and 6*q^3+1 with q prime are twin primes. Because 7 divides 6*p^3-1 when p == 3, 5, 6 mod 7, 7 divides 6*p^3+1 when p == 1, 2, 4 mod 7. Therefore p can only be 7. But then 6*7^3-1 = 11^2*17 and 6*7^3+1 = 29*71 are not prime numbers, so a(2)=0.
%H Pierre CAMI, <a href="/A327581/a327581.txt">PFGW Script</a>
%o (PARI) findp(n, pmin) = {my(pmin = nextprime(pmin+1), q); forprime(p=pmin, , if (isprime(q=6*p^prime(n)-1) && isprime(q+2), return(p));); }
%o lista(nn) = {my(lasta = 2, newa); print1(findp(1, lasta), ", 0"); for (n=3, nn, newa = findp(n, lasta); print1(", ", newa); lasta = newa;); } \\ _Michel Marcus_, Sep 20 2019
%K nonn
%O 1,1
%A _Pierre CAMI_, Sep 17 2019