OFFSET
1,1
COMMENTS
For prime(2) = 3 there is no solution such that 6*q^3-1 and 6*q^3+1 with q prime are twin primes. Because 7 divides 6*p^3-1 when p == 3, 5, 6 mod 7, 7 divides 6*p^3+1 when p == 1, 2, 4 mod 7. Therefore p can only be 7. But then 6*7^3-1 = 11^2*17 and 6*7^3+1 = 29*71 are not prime numbers, so a(2)=0.
LINKS
Pierre CAMI, PFGW Script
PROG
(PARI) findp(n, pmin) = {my(pmin = nextprime(pmin+1), q); forprime(p=pmin, , if (isprime(q=6*p^prime(n)-1) && isprime(q+2), return(p)); ); }
lista(nn) = {my(lasta = 2, newa); print1(findp(1, lasta), ", 0"); for (n=3, nn, newa = findp(n, lasta); print1(", ", newa); lasta = newa; ); } \\ Michel Marcus, Sep 20 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Pierre CAMI, Sep 17 2019
STATUS
approved