login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327581
a(1) is the smallest prime p such that 6*p^2-1 and 6*p^2+1 are twin primes; for n > 1, a(n) is the smallest prime q > a(n-1) such that 6*q^prime(n)-1 and 6*q^prime(n)+1 are twin primes or 0 if no solution exists.
1
5, 0, 2557, 51137, 52057, 55373, 88867, 95273, 179947, 236653, 993647, 1010467, 1935533, 2031767, 2138803, 2849317, 8031343, 11696563, 11715133, 18125993, 22615493, 26766633, 26801393, 29963077, 39377893, 58282927, 70354657, 98988257, 119772847, 141442493, 145460123
OFFSET
1,1
COMMENTS
For prime(2) = 3 there is no solution such that 6*q^3-1 and 6*q^3+1 with q prime are twin primes. Because 7 divides 6*p^3-1 when p == 3, 5, 6 mod 7, 7 divides 6*p^3+1 when p == 1, 2, 4 mod 7. Therefore p can only be 7. But then 6*7^3-1 = 11^2*17 and 6*7^3+1 = 29*71 are not prime numbers, so a(2)=0.
PROG
(PARI) findp(n, pmin) = {my(pmin = nextprime(pmin+1), q); forprime(p=pmin, , if (isprime(q=6*p^prime(n)-1) && isprime(q+2), return(p)); ); }
lista(nn) = {my(lasta = 2, newa); print1(findp(1, lasta), ", 0"); for (n=3, nn, newa = findp(n, lasta); print1(", ", newa); lasta = newa; ); } \\ Michel Marcus, Sep 20 2019
CROSSREFS
Sequence in context: A215616 A249737 A129205 * A098173 A180977 A371761
KEYWORD
nonn
AUTHOR
Pierre CAMI, Sep 17 2019
STATUS
approved