login
A327498
Maximum divisor of n whose prime multiplicities are distinct (A130091).
42
1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 12, 13, 7, 5, 16, 17, 18, 19, 20, 7, 11, 23, 24, 25, 13, 27, 28, 29, 5, 31, 32, 11, 17, 7, 18, 37, 19, 13, 40, 41, 7, 43, 44, 45, 23, 47, 48, 49, 50, 17, 52, 53, 54, 11, 56, 19, 29, 59, 20, 61, 31, 63, 64, 13, 11, 67, 68, 23
OFFSET
1,2
COMMENTS
A number's prime multiplicities are also called its (unsorted) prime signature.
Every positive integer appears a finite number of times in the sequence; a prime p occurs 2^(PrimePi(p) - 1) times. - David A. Corneth, Sep 17 2019
FORMULA
a(A130091(n)) = n and a(A130092(n)) < n. - Ivan N. Ianakiev, Sep 17 2019
a(n) = n / A327499(n). - Antti Karttunen, Apr 02 2022
EXAMPLE
The divisors of 60 whose prime multiplicities are distinct are {1, 2, 3, 4, 5, 12, 20}, so a(60) = 20, the largest of these divisors.
MATHEMATICA
Table[Max[Select[Divisors[n], UnsameQ@@Last/@FactorInteger[#]&]], {n, 100}]
PROG
(PARI) a(n) = {my(m = Map(), f = factor(n), res = 1); forstep(i = #f~, 1, -1, forstep(j = f[i, 2], 1, -1, if(!mapisdefined(m, j), mapput(m, j, j); res*=f[i, 1]^j; next(2)))); res} \\ David A. Corneth, Sep 17 2019
(PARI)
A351564(n) = issquarefree(factorback(apply(e->prime(e), (factor(n)[, 2]))));
A327498(n) = fordiv(n, d, if(A351564(n/d), return(n/d))); \\ Antti Karttunen, Apr 02 2022
CROSSREFS
See link for additional cross-references.
Sequence in context: A295126 A235602 A304180 * A111615 A358668 A348401
KEYWORD
nonn,easy
AUTHOR
Gus Wiseman, Sep 16 2019
STATUS
approved