OFFSET
1,2
COMMENTS
A number's prime multiplicities are also called its (unsorted) prime signature.
Every positive integer appears a finite number of times in the sequence; a prime p occurs 2^(PrimePi(p) - 1) times. - David A. Corneth, Sep 17 2019
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = n / A327499(n). - Antti Karttunen, Apr 02 2022
EXAMPLE
The divisors of 60 whose prime multiplicities are distinct are {1, 2, 3, 4, 5, 12, 20}, so a(60) = 20, the largest of these divisors.
MATHEMATICA
Table[Max[Select[Divisors[n], UnsameQ@@Last/@FactorInteger[#]&]], {n, 100}]
PROG
(PARI) a(n) = {my(m = Map(), f = factor(n), res = 1); forstep(i = #f~, 1, -1, forstep(j = f[i, 2], 1, -1, if(!mapisdefined(m, j), mapput(m, j, j); res*=f[i, 1]^j; next(2)))); res} \\ David A. Corneth, Sep 17 2019
(PARI)
A351564(n) = issquarefree(factorback(apply(e->prime(e), (factor(n)[, 2]))));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gus Wiseman, Sep 16 2019
STATUS
approved