login
A327489
T(n, k) = 1 + NOR(k - 1, n - k), where NOR is the Peirce arrow operating bitwise on the inputs, triangle read by rows, T(n, k) for n >= 1, 1 <= k <= n.
4
1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 4, 1, 2, 1, 4, 3, 3, 1, 1, 3, 3, 2, 3, 2, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 7, 7, 1, 1, 3, 3, 1, 1, 7, 7, 6, 7, 6, 1, 2, 3, 2, 1, 6, 7, 6, 5, 5, 5, 5, 1, 1, 1, 1, 5, 5, 5, 5
OFFSET
1,4
EXAMPLE
1
1, 1
2, 1, 2
1, 1, 1, 1
4, 1, 2, 1, 4
3, 3, 1, 1, 3, 3
2, 3, 2, 1, 2, 3, 2
1, 1, 1, 1, 1, 1, 1, 1
8, 1, 2, 1, 4, 1, 2, 1, 8
7, 7, 1, 1, 3, 3, 1, 1, 7, 7
6, 7, 6, 1, 2, 3, 2, 1, 6, 7, 6
5, 5, 5, 5, 1, 1, 1, 1, 5, 5, 5, 5
4, 5, 6, 5, 4, 1, 2, 1, 4, 5, 6, 5, 4
3, 3, 5, 5, 3, 3, 1, 1, 3, 3, 5, 5, 3, 3
2, 3, 2, 5, 2, 3, 2, 1, 2, 3, 2, 5, 2, 3, 2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
MAPLE
A327489 := (n, k) -> 1 + Bits:-Nor(k-1, n-k):
seq(seq(A327489(n, k), k=1..n), n=1..12);
CROSSREFS
Cf. A327488 (Nand), A327490 (Iff), A280172 (Xor).
T(2n+1,n+1) gives A080079.
Sequence in context: A231148 A266649 A159847 * A257886 A144477 A106345
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Sep 22 2019
STATUS
approved