OFFSET
0,2
COMMENTS
A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set of sets, none of which is a subset of any other. This sequence counts antichains whose dual is pairwise intersecting.
FORMULA
Binomial transform of A327020.
EXAMPLE
The a(0) = 1 through a(3) = 9 antichains:
{} {} {} {}
{{1}} {{1}} {{1}}
{{2}} {{2}}
{{1,2}} {{3}}
{{1,2}}
{{1,3}}
{{2,3}}
{{1,2,3}}
{{1,2},{1,3},{2,3}}
MATHEMATICA
dual[eds_]:=Table[First/@Position[eds, x], {x, Union@@eds}];
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
stableQ[u_, Q_]:=!Apply[Or, Outer[#1=!=#2&&Q[#1, #2]&, u, u, 1], {0, 1}];
Table[Length[Select[stableSets[Subsets[Range[n], {1, n}], SubsetQ], stableQ[dual[#], Intersection[#1, #2]=={}&]&]], {n, 0, 5}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Aug 18 2019
STATUS
approved