login
A327030
a(n) = Sum_{d|n} phi(d)*(n/d)! for n > 0, a(0) = 0.
2
0, 1, 3, 8, 28, 124, 732, 5046, 40352, 362898, 3628932, 39916810, 479002388, 6227020812, 87178296258, 1307674368272, 20922789928384, 355687428096016, 6402373706092350, 121645100408832018, 2432902008180269152, 51090942171709450128, 1124000727777647596830
OFFSET
0,3
COMMENTS
Dirichlet convolution of phi(n) and n! (n >= 1). - Richard L. Ollerton, May 09 2021
LINKS
FORMULA
a(n) = Sum_{i=1..n} gcd(n,i)!. - Ridouane Oudra, Nov 13 2019
MAPLE
with(numtheory); A327030 := n -> add(phi(d)*(n/d)!, d = divisors(n)):
seq(A327030(n), n=0..22);
MATHEMATICA
a[0] = 0; a[n_] := DivisorSum[n, EulerPhi[#] * (n/#)! &]; Array[a, 23, 0] (* Amiram Eldar, May 24 2021 *)
PROG
(PARI) a(n) = if (n>0, sumdiv(n, d, eulerphi(d)*(n/d)!), 0); \\ Michel Marcus, Aug 28 2019
(Magma) [0] cat [&+[EulerPhi(d)*Factorial(n div d):d in Divisors(n)]:n in [1..22]]; // Marius A. Burtea, Nov 13 2019
(Magma) [0] cat [&+[Factorial(Gcd(n, i)):i in [1..n]]:n in [1..22]]; // Marius A. Burtea, Nov 13 2019
CROSSREFS
Similar: A078392 (numbpart), A258171 (bell), A053635 (numbcomb), A181847 and A034738 (numbcomp), this sequence (numbperm).
Sequence in context: A009437 A347072 A000776 * A355986 A373753 A000239
KEYWORD
nonn
AUTHOR
Peter Luschny, Aug 27 2019
STATUS
approved