OFFSET
0,3
COMMENTS
Conjecture: For n>1: denominator(Bernoulli(n-1)) = n*denominator(n*Bernoulli(n-1)) <=> n is Korselt <=> n is prime or n is Carmichael.
LINKS
Amiram Eldar, Table of n, a(n) for n = 0..10000
Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv preprint, arXiv:1902.10672 [math.NT], 2019-2021.
Carl Pomerance, J. L. Selfridge, and Samuel S. Wagstaff, Jr., The pseudoprimes to 25*10^9, Math. Comp., 35 (1980), 1003-1026.
Wikipedia, Carmichael numbers, Korselt's criterion.
FORMULA
a(2*n) = 2*n.
MATHEMATICA
a[n_] := n * Denominator[n * BernoulliB[n - 1]]; a[0] = 0; Array[a, 60, 0] (* Amiram Eldar, Apr 26 2024 *)
PROG
(PARI) a(n) = if (n, n*denominator(n*bernfrac(n-1)), 0); \\ Michel Marcus, Jul 19 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Jul 17 2019
STATUS
approved