login
A326496
Number of maximal product-free subsets of {1..n}.
12
1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 6, 6, 9, 9, 15, 17, 30, 30, 46, 46, 51, 61, 103, 103, 129, 158, 282, 282, 322, 322, 553, 553, 615, 689, 1247, 1365, 1870, 1870, 3566, 3758, 5244, 5244, 8677, 8677, 9807, 12147, 23351, 23351, 27469, 31694, 45718, 47186, 54594, 54594, 95382, 108198
OFFSET
0,5
COMMENTS
A set is product-free if it contains no product of two (not necessarily distinct) elements.
Also the number of maximal quotient-free subsets of {1..n}.
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..85
Andrew Howroyd, PARI Program
EXAMPLE
The a(2) = 1 through a(10) = 6 subsets (A = 10):
{2} {23} {23} {235} {235} {2357} {23578} {23578} {23578}
{34} {345} {256} {2567} {25678} {256789} {2378A}
{3456} {34567} {345678} {345678} {256789}
{456789} {26789A}
{345678A}
{456789A}
MATHEMATICA
fasmax[y_]:=Complement[y, Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Select[Subsets[Range[n]], Intersection[#, Times@@@Tuples[#, 2]]=={}&]]], {n, 0, 10}]
PROG
(PARI) \\ See link for program file.
for(n=0, 30, print1(A326496(n), ", ")) \\ Andrew Howroyd, Aug 30 2019
CROSSREFS
Product-free subsets are A326489.
Subsets without products of distinct elements are A326117.
Maximal sum-free subsets are A121269.
Maximal sum-free and product-free subsets are A326497.
Maximal subsets without products of distinct elements are A325710.
Sequence in context: A036846 A227396 A331590 * A058740 A160642 A110868
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 09 2019
EXTENSIONS
a(18)-a(55) from Andrew Howroyd, Aug 30 2019
STATUS
approved