login
A325862
Number of integer partitions of n such that every set of distinct parts has a different sum.
30
1, 1, 2, 3, 5, 7, 10, 14, 19, 26, 34, 46, 58, 77, 93, 122, 146, 188, 217, 282, 327, 410, 470, 596, 673, 848, 947, 1178, 1325, 1629, 1798, 2213, 2444, 2962, 3247, 3935, 4292, 5149, 5579, 6674, 7247, 8590, 9221, 10964, 11804, 13870, 14843, 17480, 18675, 21866
OFFSET
0,3
COMMENTS
A knapsack partition (A108917, A299702) is an integer partition such that every submultiset has a different sum. The one non-knapsack partition counted under a(4) is (2,1,1).
EXAMPLE
The a(1) = 1 through a(7) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (222) (322)
(2111) (411) (331)
(11111) (2211) (421)
(3111) (511)
(21111) (2221)
(111111) (4111)
(22111)
(31111)
(211111)
(1111111)
The three non-knapsack partitions counted under a(6) are:
(2,2,1,1)
(3,1,1,1)
(2,1,1,1,1)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@Plus@@@Subsets[Union[#]]&]], {n, 0, 20}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 31 2019
STATUS
approved